Appendix B: Overview of Horse Race Studies

1. Studies focusing on different stochastic specifications

Blavatskyy (2013) compares eight deterministic models and a simple heuristic. He uses the stronger
utility specification for the stochastic component. Results suggest that EUT, RDU and the heuristic
achieve the best fits: together they can explain around a quarter of observed behavior. The prominent
losers are EV, DA and PR. Moreover, QU and WU are only the best models for one or two subjects.
Overall, the analysis suggests that EV, DAT, PR, QU and WU can be discarded from the menu of
promising descriptive theories. Blavatsky (2007) conducts a parametric estimation of his specification
(StEUT) and compare it only with CPT (identical to RDUT if the experiment includes lotteries with
nonnegative outcomes) using ten datasets from Conlisk (1989), Kagel et al (1990), Camerer (1989,
1992), Tversky and Kahneman (1992), Camerer and Ho (1994), Hey and Orme (1994), Wu and Gonzalez
(1996), Loomes and Sugden (1998) and Gonzalez and Wu (1999). Overall, according to Vuong's
likelihood ratio test the descriptive performance of both specifications is equally good. The Schwarz
criterion favours StEUT while the Akaike criterion favours CPT. Blavatskyy (2018) uses stronger utility
to evaluate and compare his new model, that is, second-generation disappointment aversion theory
(DAT2), with other models in the literature. The new model is reminiscent of a model presented in
Hagen (1991) and performs better than others. Finally, Hey et al (2010), focusses on decision under

ambiguity and compares the models using contextual and strong utility stochastic specifications.

2. Studies focusing on a richer menu of stochastic specifications

Wilcox (2008, 2011) compares his contextual utility specification with the strong/strict utility
specification and the wandering vector specification. His study departs from other studies by not
merely focusing on in-sample but also out-of-sample log-likelihoods. The former is the common
practice in the literature and is done by comparing log-likelihoods resulting from parameters
estimated by maximum likelihood using the whole data, that is, it focusses on the descriptive power
of specifications. Out-of-sample fit evaluates the predictive power of specifications by comparing
predictive log-likelihoods. To calculate predictive log-likelihoods, a subset of data is used to estimate
the parameters of models. Then these estimates are used to calculate the log-likelihoods on the
remaining portion of the data to construct test statistics based on the likelihood values. Overall,
contextual utility performs better in both categories whether it is combined with EUT or RDUT. When
we look at only in-sample fit, strict utility exhibits the worst fit for both deterministic models. For out-
of-sample fit, it is the worst performer for RDUT as well, but, for EUT, the wandering vector is the

poorest.



Blavatsky and Pogrebna (2010) focus on seven deterministic models and combines them with five
stochastic specifications (tremble, strong utility with homoscedastic, heteroscedastic and
heteroscedastic-truncated random errors and RPM). They estimated parametric forms of EV, EUT with
constant relative risk aversion (CRRA), and expo-power (EP) utility functions, RT or skew-symmetric
bilinear utility theory (SSB, hereafter) (Fishburn, 1983), YDM, RDUT and DAT. Their data is distinct in
the sense that it is not from a laboratory experiment, instead they use data from a natural experiment:
114 (Italian version) and 518 (British version) episodes of a TV show called "Deal or No Deal".

The data considers decisions when choosing between a risky lottery with large stakes and a certain
amount of money. Monetary outcomes vary between 1 cent and half-a-million euros hidden in
separate but identical boxes. At the beginning of the game, each contestant is endowed with a box
and at each stage, he or she forgoes a box by opening and revealing the prize in it. After each opening,
the contestant receives an offer of sure amount of money. He or she can either accept the offer and
leave or continue opening the boxes. The game ends when all the boxes are opened or the contestant
has accepted an offer.

The analysis highlights the importance of the stochastic specification: for example, different stochastic
specifications lead to different estimates of the risk attitude. For example, EUT with a CARA utility
function exhibits risk-neutrality with a tremble specification, risk-aversion with the strong utility
specification and risk-seeking with the random utility specification. As far as goodness-of-fit is
concerned, the winners are the strong utility specification with heteroscedastic truncated errors and
RPM.

Blavatsky (2011) compares his Model 1 with strong utility, contextual utility and IEUA, using EUT with
a Bernoulli utility function. He finds that his Model 1 outperforms the other specifications. Contextual
utility and IEUA specifications have a similar performance, whereas all specifications outperform the
strong utility specification.

Blavatsky (2014) compares the goodness-of-fit of five stochastic specifications using EUT and RDUT on
Hey and Orme's (1994) dataset. These stochastic specifications are strong, stronger, contextual utility
and the incremental EU advantage specification (Fishburn, 1978) and "Model 1" in Blavatsky (2009,
2011).

In the case of EUT, results suggest that the stronger utility specification performs better than the
strong and contextual utility specifications. The stronger utility specification has a similar goodness-
of-fit to that of Fishburn's specification when the Akaike information criterion is used, but is better
when the number of parameters is penalised more, for example, using the Schwarz information
criterion. When the stronger utility specification is compared to Model 1, there seems to be no

improvement in goodness-of-fit under EUT. Compared to Model 1, the stronger utility specification



can only accommodate violations of expected utility when the preference function is nonlinear in
probabilities. However, when we use RDUT with the Quiggin weighting function, the stronger utility
specification achieves a slightly better performance than Model 1. Similar results are found when EUT
is the deterministic structure.

Wilcox (2015) compares strong utility, contextual utility, DFT and stronger utility, within EUT and RDUT
using a new dataset composed of 80 subjects' responses for 100 pairs of lotteries. Ranking among the
stochastic specifications depends on the way we specify the functional form of a deterministic model.
For example, when EU and RDUT has a parametric form, CU performs better than DFT and stronger
utility, whereas stronger utility achieves the best fit under non-parametric estimation for EUT while

DFT is the best for RDUT.



Table B1: Datasets
Acr Source References Notes
HO Hey & Orme (1994) Hey (1995); Carbone & Hey (2000); Buschena & | 80 subjects participated in 4 experiments in different occasions:
Zilberman (2000); Wilcox (2008); Wilcox (2011); | Circles 1, Dynamics 1, Circles 2, Dynamics 2. Only Circles 1 and 2
Blavatsky (2011); Blavatsky (2014) used in analysis, which composed of same 100 pairwise choice
questions in different order.
23D Harless & Camerer - 23 datasets aggregated from previous studies consisting of 2000
(1994) choice patterns

CH Carbone & Hey Carbone (1997) 40 subjects answered 94 pairwise choice questions; in 8 of them
(1995) one lottery dominates other.

LS Loomes & Sugden Loomes et al (2002) 92 subjects answered 45 pairwise choice questions twice.
(1998)

10D Blavatskyy (2007) - 10 datasets from previous studies eliciting certainty equivalents,
binary choices in hypothetical or incentivised settings, so each
dataset analyzed separately.

TV Blavatskyy & - Consists of 114 and 518 episodes of TV show called “Deal or No

Pogrebna (2010) Deal”; aired in Italy and UK, respectively.

H10 Hey et al (2010) - Unlike others it is an experiment on ambiguity; 48 subjects
answered 162 pairwise choice questions; 3 treatments vary
according to the total number of balls.

B13 Blavatskyy (2013) Blavatskyy (2018) 38 subjects answered 140 binary choice questions

W15 Wilcox (2015) 80 subjects answered 100 binary choice questions

Notes: First column lists the acronyms of datasets, second column lists the study in which the dataset is first used, third column lists the studies that use the

dataset. Final column includes some basic information about each dataset.




Table B2: Snapshot of comparative studies
Study Year Deterministic Models Tre | HoOS | HeS | THeS | RPM | Str | WV | CU | DFT | M1 | Ser | Data
Hey & Orme | 1994 | EV, EUT, DAT, PR, QU, RT, RDUT, WU, YDM 4 0
Harless & 1994 EV, EUT, fanning in and out, RDUT, PT 4 23D
Camerer
Hey 1995 EUT, EV, DAT, PR, QU, RT, RDUT, WU 4 4 HO
Carbone 1997 EUT 4 4 4 CH
Carbone & 2000 EV, EUT, DAT, PR, RT, RDUT, QU, WU 4 4 HO
Hey
Buschena & | 2000 EUT, DAT, PR, RT, RDUT, QU, WU 4 4 HO
Zilberman
Loomes etal | 2002 EUT, RDUT 4 4 4 LS
Blavatsky 2007 StEUT, CPT 4 10D
Wilcox 2008 EUT, RDUT 4 4 Vv Y HO
Blavatsky & | 2010 EV,EUT, RT YDM, RDUT, DAT 4 4 4 4 v TV
Pogrebna
Hey et al 2010 | EV, EUT, CEU, PT, CPT, DFT, GSMaxMin, 4 v 0
GSMaxMax, Alpha, MinReg, MaxMakx,
MaxMin
Wilcox 2011 EUT, RDUT 4 v v v HO
Blavatsky 2011 EUT 4 v v HO
Blavatsky 2013 | EV, EUT, DAT, PR, QU, RDUT, WU, YDM, vl o
MVA, H
Blavatsky 2014 EUT, RDUT v v v | Y | HO
Wilcox 2015 EUT, RDUT v v v v 1o
Blavatsky 2018 | DAT2, EV, EUT, DAT, PR, QU, RDUT, WU, v | B13
YDM, H

Column 3 EV: expected value; EUT: expected utility; DAT: disappointment aversion; PR: prospective reference; QU: quadratic utility; RT: regret theory; RDUT: rank dependent utility; WU: weighted
utility; YDM: Yaari’s dual model; PT: prospect theory; StEUT: stochastic expected utility; CPT: cumulative prospect theory; GSMaxMin: Gilbao and Schmeidler's MaxMin ; GSMaxMax: Gilbao and
Schmeidler's MaxMax; Alpha: Ghirdato et al's alpha; MinReg: minimum regret; MVA: mean variance approach; H: a heuristic: DAT2: second generation disappointment aversion theory. Coloumns
4 to 14 Tre: Tremble; HoS: homoscedastic strong utility, HeS: heteroscedastic strong utility, THeS: truncated and heteroscedastic strong utility; RPM: random preference model; Str: strict utility;
WV: wandering vector; CU: contextual utility; DFT: decision field theory; M1: model 1 of Blavatsky; Ser: stronger utility model. Coloumn 15 See Table B1 for acronym
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