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Appendix B: Overview of Horse Race Studies 

1. Studies focusing on different stochastic specifications 

Blavatskyy (2013) compares eight deterministic models and a simple heuristic. He uses the stronger 

utility specification for the stochastic component. Results suggest that EUT, RDU and the heuristic 

achieve the best fits: together they can explain around a quarter of observed behavior. The prominent 

losers are EV, DA and PR. Moreover, QU and WU are only the best models for one or two subjects. 

Overall, the analysis suggests that EV, DAT, PR, QU and WU can be discarded from the menu of 

promising descriptive theories. Blavatsky (2007) conducts a parametric estimation of his specification 

(StEUT) and compare it only with CPT (identical to RDUT if the experiment includes lotteries with 

nonnegative outcomes) using ten datasets from Conlisk (1989), Kagel et al (1990), Camerer (1989, 

1992), Tversky and Kahneman (1992), Camerer and Ho (1994), Hey and Orme (1994), Wu and Gonzalez 

(1996), Loomes and Sugden (1998) and Gonzalez and Wu (1999). Overall, according to Vuong's 

likelihood ratio test the descriptive performance of both specifications is equally good. The Schwarz 

criterion favours StEUT while the Akaike criterion favours CPT. Blavatskyy (2018) uses stronger utility 

to evaluate and compare his new model, that is, second-generation disappointment aversion theory 

(DAT2), with other models in the literature. The new model is reminiscent of a model presented in 

Hagen (1991) and performs better than others. Finally, Hey et al (2010), focusses on decision under 

ambiguity and compares the models using contextual and strong utility stochastic specifications.  

 

2. Studies focusing on a richer menu of stochastic specifications  

Wilcox (2008, 2011) compares his contextual utility specification with the strong/strict utility 

specification and the wandering vector specification. His study departs from other studies by not 

merely focusing on in-sample but also out-of-sample log-likelihoods. The former is the common 

practice in the literature and is done by comparing log-likelihoods resulting from parameters 

estimated by maximum likelihood using the whole data, that is, it focusses on the descriptive power 

of specifications. Out-of-sample fit evaluates the predictive power of specifications by comparing 

predictive log-likelihoods. To calculate predictive log-likelihoods, a subset of data is used to estimate 

the parameters of models. Then these estimates are used to calculate the log-likelihoods on the 

remaining portion of the data to construct test statistics based on the likelihood values. Overall, 

contextual utility performs better in both categories whether it is combined with EUT or RDUT. When 

we look at only in-sample fit, strict utility exhibits the worst fit for both deterministic models. For out-

of-sample fit, it is the worst performer for RDUT as well, but, for EUT, the wandering vector is the 

poorest. 
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Blavatsky and Pogrebna (2010) focus on seven deterministic models and combines them with five 

stochastic specifications (tremble, strong utility with homoscedastic, heteroscedastic and 

heteroscedastic-truncated random errors and RPM). They estimated parametric forms of EV, EUT with 

constant relative risk aversion (CRRA), and expo-power (EP) utility functions, RT or skew-symmetric 

bilinear utility theory (SSB, hereafter) (Fishburn, 1983), YDM, RDUT and DAT. Their data is distinct in 

the sense that it is not from a laboratory experiment, instead they use data from a natural experiment: 

114 (Italian version) and 518 (British version) episodes of a TV show called "Deal or No Deal". 

The data considers decisions when choosing between a risky lottery with large stakes and a certain 

amount of money. Monetary outcomes vary between 1 cent and half-a-million euros hidden in 

separate but identical boxes. At the beginning of the game, each contestant is endowed with a box 

and at each stage, he or she forgoes a box by opening and revealing the prize in it. After each opening, 

the contestant receives an offer of sure amount of money. He or she can either accept the offer and 

leave or continue opening the boxes. The game ends when all the boxes are opened or the contestant 

has accepted an offer. 

The analysis highlights the importance of the stochastic specification: for example, different stochastic 

specifications lead to different estimates of the risk attitude. For example, EUT with a CARA utility 

function exhibits risk-neutrality with a tremble specification, risk-aversion with the strong utility 

specification and risk-seeking with the random utility specification. As far as goodness-of-fit is 

concerned, the winners are the strong utility specification with heteroscedastic truncated errors and 

RPM.    

Blavatsky (2011) compares his Model 1 with strong utility, contextual utility and IEUA, using EUT with 

a Bernoulli utility function. He finds that his Model 1 outperforms the other specifications. Contextual 

utility and IEUA specifications have a similar performance, whereas all specifications outperform the 

strong utility specification.  

Blavatsky (2014) compares the goodness-of-fit of five stochastic specifications using EUT and RDUT on 

Hey and Orme's (1994) dataset. These stochastic specifications are strong, stronger, contextual utility 

and the incremental EU advantage specification (Fishburn, 1978) and "Model 1" in Blavatsky (2009, 

2011).  

In the case of EUT, results suggest that the stronger utility specification performs better than the 

strong and contextual utility specifications. The stronger utility specification has a similar goodness-

of-fit to that of Fishburn's specification when the Akaike information criterion is used, but is better 

when the number of parameters is penalised more, for example, using the Schwarz information 

criterion. When the stronger utility specification is compared to Model 1, there seems to be no 

improvement in goodness-of-fit under EUT. Compared to Model 1, the stronger utility specification 
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can only accommodate violations of expected utility when the preference function is nonlinear in 

probabilities. However, when we use RDUT with the Quiggin weighting function, the stronger utility 

specification achieves a slightly better performance than Model 1. Similar results are found when EUT 

is the deterministic structure. 

Wilcox (2015) compares strong utility, contextual utility, DFT and stronger utility, within EUT and RDUT 

using a new dataset composed of 80 subjects' responses for 100 pairs of lotteries. Ranking among the 

stochastic specifications depends on the way we specify the functional form of a deterministic model. 

For example, when EU and RDUT has a parametric form, CU performs better than DFT and stronger 

utility, whereas stronger utility achieves the best fit under non-parametric estimation for EUT while 

DFT is the best for RDUT.  
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Table B1: Datasets 

Acr Source  References Notes 

HO Hey & Orme (1994) Hey (1995); Carbone & Hey (2000); Buschena & 
Zilberman (2000); Wilcox (2008); Wilcox (2011); 

Blavatsky (2011); Blavatsky (2014) 

80 subjects participated in 4 experiments in different occasions: 
Circles 1, Dynamics 1, Circles 2, Dynamics 2. Only Circles 1 and 2 
used in analysis, which composed of same 100 pairwise choice 
questions in different order. 

23D Harless & Camerer 
(1994) 

- 23 datasets aggregated from previous studies consisting of 2000 
choice patterns 

CH Carbone & Hey 
(1995) 

Carbone (1997) 40 subjects answered 94 pairwise choice questions; in 8 of them 
one lottery dominates other. 

LS Loomes & Sugden 
(1998) 

Loomes et al (2002) 92 subjects answered 45 pairwise choice questions twice. 

10D Blavatskyy (2007) - 10 datasets from previous studies eliciting certainty equivalents, 
binary choices in hypothetical or incentivised settings, so each 
dataset analyzed separately.  

TV Blavatskyy & 
Pogrebna (2010) 

- Consists of 114 and 518 episodes of TV show called “Deal or No 
Deal”; aired in Italy and UK, respectively.  

H10 Hey et al (2010) - Unlike others it is an experiment on ambiguity; 48 subjects 
answered 162 pairwise choice questions; 3 treatments vary 
according to the total number of balls. 

B13 Blavatskyy (2013) Blavatskyy (2018) 38 subjects answered 140 binary choice questions 

W15 Wilcox (2015)  80 subjects answered 100 binary choice questions 

Notes: First column lists the acronyms of datasets, second column lists the study in which the dataset is first used, third column lists the studies that use the 

dataset. Final column includes some basic information about each dataset. 
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Table B2: Snapshot of comparative studies 

Study Year Deterministic Models Tre HoS HeS THeS RPM Str WV CU DFT M1 Ser Data 

Hey & Orme 1994 EV, EUT, DAT, PR, QU, RT, RDUT, WU, YDM            O 

Harless & 
Camerer 

1994 EV, EUT, fanning in and out, RDUT, PT            23D 

Hey 1995 EUT , EV, DAT, PR, QU, RT, RDUT, WU            HO 

Carbone 1997 EUT            CH 

Carbone & 
Hey 

2000 EV, EUT, DAT, PR, RT, RDUT, QU, WU            HO 

Buschena & 
Zilberman 

2000 EUT, DAT, PR, RT, RDUT, QU, WU            HO 

Loomes et al 2002 EUT, RDUT            LS 

Blavatsky 2007 StEUT, CPT            10D 

Wilcox 2008 EUT, RDUT            HO 

Blavatsky & 
Pogrebna 

2010 EV,EUT, RT YDM, RDUT, DAT            TV 

Hey et al 2010 EV, EUT, CEU, PT, CPT, DFT, GSMaxMin, 
GSMaxMax, Alpha, MinReg, MaxMax, 

MaxMin 

           O 

Wilcox 2011 EUT, RDUT            HO 

Blavatsky 2011 EUT            HO 

Blavatsky 2013 EV, EUT, DAT, PR, QU, RDUT, WU, YDM, 
MVA, H 

           O 

Blavatsky 2014 EUT, RDUT            HO 

Wilcox 2015 EUT, RDUT            O 

Blavatsky 2018 DAT2, EV, EUT, DAT, PR, QU, RDUT, WU, 
YDM, H 

           B13 

Column 3 EV: expected value; EUT: expected utility; DAT: disappointment aversion; PR: prospective reference; QU: quadratic utility; RT: regret theory; RDUT: rank dependent utility; WU: weighted 
utility; YDM: Yaari’s dual model; PT: prospect theory; StEUT: stochastic expected utility; CPT: cumulative prospect theory; GSMaxMin: Gilbao and Schmeidler's MaxMin ; GSMaxMax: Gilbao and 
Schmeidler's MaxMax; Alpha: Ghirdato et al's alpha; MinReg: minimum regret; MVA: mean variance approach; H: a heuristic: DAT2: second generation disappointment aversion theory. Coloumns 
4 to 14 Tre: Tremble; HoS: homoscedastic strong utility, HeS: heteroscedastic strong utility, THeS: truncated and heteroscedastic strong utility; RPM: random preference model; Str: strict utility; 
WV: wandering vector; CU: contextual utility; DFT: decision field theory; M1: model 1 of Blavatsky; Ser: stronger utility model. Coloumn 15 See Table B1 for acronym
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